پیشرفت های قابل توجه فن آوری در طی دهه های گذشته به طور چشمگیری طریقه ارتباط برقرار کردن مردم با بسیاری از منابع مختلف اطلاعات و سرگرمی را تغییر داده است. کاربران فن آوری های مدرن، در ارتباط با انواع رسانه ها از یک حالت انفعال به وضعیت فعال منتقل شده است. همین طور که مقادیر داده ای در دسترس افزایش می یابد، تکنیک های کارآمد داده گردانی نیز لازم می شود.
در چند سال گذشته داده های صوتی به میزان زیاد از منابع در دسترس مانند پایگاه داده ها، برنامه های پخش و اینترنت ایجاد شده اند. بخاطر این که، توجه ویژه ای به توسعه استراتژی ها جابجایی داده اختصاص داده شده است. لذا، افتراق گفتار / موسیقی (SMD) به عنوان یکی از اهداف مهم به شمار می رود.
برای اهداف مختلفی می توان از یک SMD کارآمد بهره مند شد. از این ابزار می توان برای انتخاب براساس محتوا در مجموعه برنامه های پخش استفاده کرد. نمونه ای از این نوع کاربرد، انتخاب ایستگاه های رادیویی است که در واقع فقط موسیقی پخش می کنند. همچنین SMD قسمت اساسی تشخیص خودکار گفتار (ASR) و رونویسی موسیقی اتوماتیک (AMT)، که اغلب نیاز به تجزیه و تحلیل داده های صوتی بی ساخت یا نامعلوم دارند. در مورد ASR، بخش گفتار فقط باید در نظر گرفته شود، در حالی که در AMT باید نمونه های موسیقی مورد توجه قرار گیرند. لذا مهم است که سیگنال قبل از ورود به این سیستم ها به طور صحیح قطعه بندی شود. در نهایت نیز، توجه داشته باشید که دستگاه های مدرن کمک شنوایی اغلب شامل الگوریتم هایی هستند که عملکرد دستگاه را با توجه به نوع صدایی که به گوش می رسد تغییر می دهد.
سمینار ارشد رشته برق الکترونیک: تشخیص گفتار از موسیقی به روش شبکه عصبی مصنوعی