در این مجموعه هدف ما بررسی مدلهای مختلف و همچنین كنترلرهای بكار رفته جهت كنترل پدیده های ناپایداری فلو در كمپرسورها می باشد . ناپایداری های آئرودینامیكی فلو می توانند كمپرسور را بطور جدی آسیب رسانند و ناحی ه عملكرد سیستم را محدود نمایند بنابراین بایستی برای اجتناب از آنها چاره ای اندیشید.
ابتدا مدلهای استخراج شده برای سیستم های فشرده سازی محوری و گریز از مركز را معرفی می نماییم، سپس به بررسی روش های مختلف ارائه شده تا كنون برای كنترل ناپایداری سرج در كمپرسور های محوری و گریز از مركز می پردازیم، نهایتا مقایسه روش های مختلف با یكدیگر و نتیجه گیری پایانی را می آوریم و در انتها چند مدل تجاری كنترلرهای آنتی سرج را معرفی می نماییم.
2-1) پیشینه تحقیق
مدل دینامیكی به دست آمده برای كمپرسور های محوری و سانتریفیوژ بر اساس مدل دو حالته با پارامترهای lumped طبق مدل ارائه شده توسط گرایتزر می باشد كه مبنای طراحی كنترلرهای آنتی سرج از گذشته تا كنون برای این كمپرسورها می باشد. در روش های قدیمی كنترل سرج تكنیک مورد استفاده، اجتناب از سرج بود. در این روشها از ابزارهای مختلفی بر ای دور نگه داشتن نقطه كار كمپرسور از ناحیه ای كه در آن سرج رخ می دهد، استفاده می گردید. از نظر عملی خطی به نام خط كنترل سرج در فاصله ای دورتر از خط سرج ترسیم می شود تا بدین وسیله یک حاشیه اجتناب از سرج در منحنی مشخصه كمپرسور به دست آید. این روش ما را مطمئن می سازد كه نقطه كار سیستم خط سرج را قطع نمی كند و لذا پدیده سرج به وقوع نمی پیوندد. این روش ناحیه كاری كمپرسور را به ناحیه ای كه سیستم در وضعیت حلقه باز در آن ناحیه پایدار است، محدود كرده و لذا راندمان كل سیستم را محدود می كند.
روش های مبتنی بر كنترل فعال سرج، كه ناپایداریهایی را كه منجر به سرج می شوند حذف نمایند، می توانند ناحیه عملكرد پایدار سیستم را به آنسوی خط سرج سیستم گسترش دهند و ناحیه كاری پایدار سیستم را وسیعتر نمایند . براساس مدل خطی شده سیستم، اپشتاین، فوكس ویلیام و گرایتزر، روش كنتر ل فعال جهت حذف سرج ارائه داده اند. كنترلر فیدبك مثبت استاتیک خروجی توسط فرنك ویلمز جهت كنترل سرج با محرك ولو تخلیه فلوی جرمی، مورد استفاده گردید كه توانست حدود 7 درصد در فلوی جرمی نقطه سرج بهبود ایجاد نماید . این روش بر اساس تكنیكهای جایابی قطب با بهره گرفتن از مدل خطی شده گرایتزر با دو متغیر حالت بود كه در آن از تغییرات سرعت كمپرسور و اثرات دما، صرف نظر شده بود.
وجود سر و صدای ناخواسته در جوامع شهری و صنعتی جلوه دیگری از آلودگیهای زیست محیطی است كه تاثیر آزار دهنده در محیط كار و زندگی افراد دارد.
از این نوع آلاینده ها كه با بسیاری از صنایع مرتبط است با عنوان نویزهای صوتی یاد می شود. این آلایش ها اگر به شكل مناسب كنترل نشوند می توانند عوارض متعددی را برای افراد حاضر در محیط پدید آورند. دو عارضه مستقیم برای نویز صوتی ذكر شده است، عارضه اول آن است كه نویز صوتی در كوتاه مدت موجب خستگی ذهنی شنونده می شود و تمركز او را كاهش م یدهد كه این امر اغلب موجب تاثیر گذاری بر عملكرد افراد، پریشانی و حواس پرتی ایشان می گردد. عارضه دوم كه تنها در اثر قرار گرفتن دراز مدت در محیط دارای نویز صوتی با دامنه بالا بوجود می آید كاهش قدرت شنوایی افراد را بدنبال خواهد داشت. برای كنترل نویز صوتی دو روش كلی مورد استفاده قرار می گیرد كه از آنها با عناوین كنترل غیر فعال و كنترل فعال نویز (ANC) یاد می شود.
ایده كنترل غیر فعال، روش سنتی برای كنترل و كاهش نویز صوتی می باشد. در این روش محفظه، مانع و مواد جاذب صوت برای كاهش نویز ناخواسته بكار گرفته می شود. مواد جاذب صوت غیر فعال معمولا در اگزوزهای موتورهای احتراق داخلی كاربرد دارد. در حالیكه عای قهای صوتی مقاومتی بیشتر در فن داخل لوله استفاده می شود. مواد جاذب صوت، تضعیف صوت قابل توجهی در محدوده فركانسی بالای 500 هرتز ایجاد می نمایند و در فركانس های پائین قابلیت خود را از دست می دهد. در عمل ثابت شده است كه ضخامت عایق صوتی كه باید استفاده شود با طول موج صوت حذف شونده دارای نسبت مستقیم است.
در فركانس های پائین بدلیل بلند بودن طول موج های صوتی، استفاده از محفظه های سنگین، مواد جاذب صوت ضخیم و حجیم و خفه كننده های بزرگ جهت كنترل نویز ضروری می باشد. در نتیجه كاربرد كنترل كننده های غیر فعال نویز پرهزینه، حجیم، مشكل و غیر موثر است.
در روش كنترل فعال نویز برخلاف روش كنترل غیر فعال سعی نمی شود كه با بهره گرفتن از مواد جاذب، نویز تضعیف گردد بلكه هدف آن است كه نویز صوتی دیگری با همان دامنه و فركانس نویز اصلی اما با فاز مخالف ایجاد شود تا در اثر تركیب آن با نویز اولیه، نویز صوتی حذف شده و یا حداقل تا حد قابل ملاحظه ای تضعیف گردد.
روش كنترل فعال نویز توسط Paul Leug در سال 1936 میلادی اختراع شد و به ثبت رسید. اولین بار سیستم كنترل فعال نویز بر روی یک لوله كه از نظر صوتی دارای ساده ترین مدل می باشد پیاده شد. این پیاده سازی اولین گام در جهت رسیدن به سیست مهای عملی امروز بود. در این آزمایش با فرستادن یک سیگنال مزاحم یا نویز از ابتدای لوله و پخش سیگنالی دیگر با همان دامنه و فركانس نویز اصلی با فاز مخالف از طریق یک بلندگو كه باز هم در ابتدای لوله نصب شده است سعی بركاهش نویز و حداقل نمودن خطا با بهره گرفتن از سیگنال دریافتی از میكروفن خطا در انتهای لوله می باشد. این سیستم یكی از سیستم های عملی و ساده در آزمایشگاه ها برای آزمون روش كنترل فعال نویز است.
بسیاری از فرایندهای تجاری و صنعتی كه از نزدیک با افراد ارتباط دارند آلودگی بالایی از لحاظ شنیداری ایجاد می كنند و این موضوع از جمله نكاتی می باشد كه موجب گستردگی توجه به كاربرد سیستم های كنترل فعال نویز صوتی (ANC) شده است. بسیاری از صنایع، كارخانجات، سیست مهای حمل و نقل و… در عمل با آلودگی بسیاری همراه هستند و به همین دلیل تامین سلامتی افرادی كه با این سیستم ها سروكار دارند یكی از اهداف كنترل فعال نویز است.
سیستم های كنترل فعال نویز (ANC) كاربردهای زیادی در صنعت دارند كه از آن جمله به كاربرد آن در صنایع حمل و نقل و وسایل نقلیه شامل اتومبیل، وانت، كامیون، صنایع خودروهای زمینی، خودروهای نظامی، هواپیما (بخصوص نوع ملخی آن)، هلیكوپتر اشاره كرد. همچنین در سایر كاربردهای صنعتی نظیر كانال ها و دستگاه های تهویه هوا، فن ها، كانا لهای هوای صنعتی، دودكش ها، ترانسفورماتورها، كمپرسورها، پمپ ها، تونل های باد، یخچال، ماشین لباسشویی، جاروبرقی، كوره ها، رطوبت گیرها، كابین های اداری، ناحیه های آرام (ایزوله) بلحاظ صدا، گوش یهای محافظ و گوشی تلفن می توان اشاره كرد. توضیحات بیشتر در مورد كاربردهای سیستم های ANC و محدودیتهای موجود برای كاربرد آنها در حال و آینده در [HAN04] ارائه گردیده است.
IMS (زیر سیستم چند رسانه ای بر مبنای IP) در واقع یک شالوده شبكه سیار است كه انتقال اطلاعات، صحبت و تكنولوژی شبكه سیار را در طی یک ساختار برمبنای IP ممكن می سازد و جهت پر كردن فاصله میان مخابرات كلاسیک و سرویسهای جدید مانند اینترنت و افزایش كیفیت، یكپارچه شدن سرویسها و فراهم كردن سرویسهای چند رسانه ای است. (تركیب صدا و اطلاعات، كنفرانسهای ویدئویی، دسترسی به اینترنت، MMS و SMS، بازیهای گروهی و …). هدف IMS تنها فراهم كردن سرویسهای متنوع نمی باشد، بلكه آنچه كه بسیار اهمیت دارد ارائه سرویسها با همان كیفیت قبل، در صورت جابجایی كاربر است. IMS بالاخص برای افزایش میزان بلادرنگ بودن سرویسهای چند رسانه ای طراحی شده است. در واقع IMS این فرصت را فراهم می كند كه بتوانیم به ارتباطات جذاب، ساده، امن و مفید سرویسهای چند رسانه ای شامل صدا، تصویر، متن یا تركیبی از اینها دست یابیم.
IMS صنعت مخابرات را در سالهای اخیر به شدت تحت تاثیر قرار داده است. معماری جدید كه در اصل برای انتقال چند رسانه ای IP به كاربران بی سیم بود به عنوان یک استاندارد غیر قابل اجتناب است، پلی جهت انتقال از شبكه ثابت به شبكه های IP است.
كمپانی هایی مانند Nortel و Avaya و Alcatel Lucent و سایرین بازار IMS خود را پیش برده اند.
از آنجایی كه شبكه های بر مبنای IP دارای معماری گسترده ای هستند و دستیابی آسان به سرویس ها را فراهم می كنند، تحت تهاجم هایی خواهند بود و بنابراین به مكانیزم ها و تكنیک های امنیتی پیچیده نیاز دارند، به همین علت احراز هویت، رمز نگاری و تكنیكهای حفاظت اطلاعات مطرح می شود، تا در مقابل تهدیدات امنیتی پروتكل ها، فعالیتهای غیر مجاز، سرویسهای كاذب و غیره حفاظت شود.
با معرفی تلفن ھمراه، در اوایل دھه ی ھشتاد میلادی به عنوان یک وسیله ارتباطی ھمگانی، سیر صعودی بھره مندی از این گونه سیستمھا با رشد ھمراه بود. با گسترش استفاده از سیستمھای مخابرات سیار و شبکھھای بیسیم، بخصوص در شھرھای بزرگ و مکان ھای پر رفت و آمد، مشکل کمبود ظرفیت نمایان شد. این کمبود با بالا رفتن توقع کاربران در کیفیت و تنوع سرویسھای ارائه شده، نمود بیشتری پیدا کرد. استفاده از مخابرات باند پھن تا حدودی این مشکل را حل کرده است، ولی در اکثر سیستمھای مخابراتی و اطلاعاتی، طراحان با کمبود پھنای باند و افزایش تداخل روبرو ھستند.
استفاده از آنتنھای آرایه ای تطبیقی در سیستمھای مخابراتی بیسیم و سیار سلولی، مشکلات ناشی از تداخل ایجاد شده را کاھش میدھد. با بهره گرفتن از آنتنھای آرایھای تطبیقی و تغییر وزن ھا، میتوان الگوی تشعشعی را در جھت سیگنال مطلوب و صفرھا را در جھت سیگنالھای مزاحم شکل دھی نمود. برای دستیابی به الگوی تشعشعی در جھتی خاص و نحوهی كنترل و وزن دھی عناصر آرایه، الگوریتم ھای تطبیقی زیادی وجود دارد. این الگوریتم ھای تطبیقی به دو صورت است:
1- الگوریتم ھایی که نیاز بھ یک سیگنال مرجع یا رشته آموزشی دارند و به اصطلاح الگوریتم ھای مبتنی بر رشته ی آموزشی گفته میشوند.
2- الگوریتم ھایی که نیاز به یک سیگنال مرجع یا رشته آموزشی ندارند و با بهره گرفتن از الگوریتم ھای DOA، جھت ورود سیگنال به آرایه تخمین زده میشود و سپس از این اطلاعات در تعیین وزنھای آرایه استفاده میشود، به این الگوریتمھا، الگوریتمھای کور گفته میشود.
با بهره گرفتن از الگوریتم ھای مناسب تخمین جھت ورود سیگنال، میتوان به تخمینھای قابل قبولی رسید. با معلوم بودن جھت سیگنال کاربر، دامنه و فاز سیگنالھای دریافتی، باعث تقویت سیگنال مطلوب و تضعیف تداخل میشوند و این خود باعث بھبود عملکرد و افزایش ظرفیت میشود.
رادار، سیستمی الکترومغناطیسی است که برای تشخیص و به دست آوردن موقعیت اشیا به کار می رود. این دستگاه موج خاصی از خود متصاعد می کند (به عنوان مثال به شکل مدولاسیون پالسی با یک موج سینوسی). این موج پس از برخورد با جسم موردنظر برمی گردد. این موج را اکو می نامیم رادار با پردازش اکو اطلاعاتی از جسم به دست می آورد.
رادار مخفف کلمات Radio Detection & Ranging است و برای اولین بار در جنگ جهانی دوم برای تشخیص هواپیماهای دشمن و نشانه گیری سلاح های ضد هواپیما به کار گرفته شد. رادارها برای شناسایی اجسامی به کار می روند که چشم ما قادر به دیدن آنها نیست. مثلا اجسام در فواصل دور یا اجسام در مه. این یکی از مهمترین کاربردهای رادار است. یک رادار ابتدایی از یک فرستنده، آنتن گیرنده و یک آشکارساز انرژی تشکیل شده است.
رادارها در زمین، هوا و دریا استفاده می شوند. در ادامه به چند مورد از کاربردهای رادار اشاره می کنیم:
- کنترل ترافیک هوایی
- ناوبری هواپیما
- کاربردهای هواشناسی
- امنیت کشتی ها
- کاربردهای فضایی
- کنترل سرعت در جاده ها
- کاربردهای نظامی که تقریبا بیشترین استفاده از رادار در این قسمت است.
کارکردهای اصلی رادار:
- تشخیص وجود جسم
- تشخیص فاصله جسم: این کار معمولا به کمک اندازه گیری زمان رفت و برگشت موج انجام می شود.
- تشخیص ثابت یا متحرک بودن جسم: این کار به کمک دنبال کردن جسم یا استفاده از اثر داپلر انجام می شود.
- تشخیص سرعت جسم: در واقع هر سیستم راداری که قادر به تشخیص فاصله باشد، به کمک یک حافظه می تواند سرعت جسم را تعیین کند. اما معمولا از اثر داپلر استفاده می شود.
- دنبال کردن جسم.
از آنجا که امواج HF (فرکانس 3 تا 30 مگاهرتز) پس از برخورد با یونیسفر منعکس می شوند، از رادارهایی که فرکانس آنها در محدوده HF است و به رادارهای فرکانس بالا و یا HF رادار معروف هستند برای بررسی فواصل خیلی زیاد استفاده می شود. از سویی دیگر همان گونه که بعدا خواهیم دید در بررسی سطح اقیانوس ها باید طول موج امواج ارسالی توسط رادار دو برابر طول موج امواج اقیانوس باشد و با توجه به طول موج امواج HF بهترین گزینه برای بررسی سطح اقیانوس ها HF رادارها می باشند.
HF رادارها در زمینه های مختلفی از جمله مشاهده جریان های اقیانوس به کار برده می شوند. این مشاهده برای دنبال کردن اجسام متحرک بر روی آب، تشخیص جریان های گردابی، نظارت بر یخ دریاها، اخطار برای وجود سونامی و نظارت بر آلودگی های دریا به کار می روند.
رادارهای فرکانس بالا در دو مد امواج – آسمانی و امواج – زمینی کار می کنند. در رادارهای امواج – آسمانی، رادار مانند ایستگاه های مخابراتی HF امواج را در یک زاویه باریک در سطح افق و در یک زاویه عمودی بزرگ بین 5 تا 25 درجه منتشر می کنند. امواج تابیده شده با زاویه عمودی کم تا زاویه بزرگ بحرانی (که به فرکانس امواج ارسالی و چگالی الکترون های یونیسفر وابسته است) بازتاب می شوند به طوری که به سمت زمین برگشت داده می شوند.
با توجه به اهمیت رادارهای فرکانس بالا و ویژگی های منحصر به فرد آن، در این سمینار سعی شده تا در فصل دوم ویژگی های کلی رادارهای فرکانس بالا بررسی شود. در آن فصل ابتدا انواع روش های بکارگیری این رادار شرح داده می شود و سپس با تفصیل بیشتری به نحوه عملکرد رادارهای موج – آسمانی و چگونگی شکست امواج HF در اثر برخورد با یونیسفر تشریح می گردد و رابطه مربوط به شکست این امواج ارائه می شود. در ادامه این فصل نحوه عملکرد رادارهای موج – زمینی بیان شده و رابطه طول موج ارسالی و طول موج امواج اقیانوس شرح داده می شود.
در فصل سوم چند نوع از رادارهای فرکانس بالا و کاربردهای آنها شرح داده می شود و در فصل چهارم روش اندازه گیری ارتفاع و جهت امواج دریاها توسط رادارهای فرکانس بالا شرح داده می شود. در فصل پنجم روش آشکارسازی سونامی که یکی از کاربردهای مهم رادارهای فرکانس بالا در سال های اخیر است بیان می شود.