تمایل جدیدی که در جهت عینی شدن، اخیرأ مطرح شده است استفاده از منطق فازی در ترکیب با محاسبات عصبی و الگوریتم ژنتیک می باشد.عمومأ منطق فازی ،شبکه های عصبی و الگوریتم ژنتیک به عنوان پایه و اساس تشکیل دهنده می باشد.انچه که به عنوان محاسبات نرم دیده می شود، به حساب می ایند.بر خلاف روش های متداول قدیمی که محاسبه سخت به شمار می روند، محاسبات نرم با هدف به کاربردن تولرانس برای موارد عدم دقت در دنیای واقعی سازمان دهی شده است.اصول راهنمای محاسبات نرم عبارتند از در نظر گرفتن تولرانس برای عدم دقت،عدم اطمینان و تا حدی درست،به منظور دستیابی به توانایی ردیابی ،مقاوم بودن و همچنین راه حل ارزان و سریع می باشد،در بین ترکیبات مختلفمربوط به محاسبات نرم ،موردی که بیش از بقیه در این زمان مورد توجه است ترکیب منطق فازی و محاسبات عصبی می باشد که تحت نام سیستمهای عصبی – فازی شناخته می شوند.در منطق فازی چنین سیستمهایی نقش بسیار مهمی را در تاثیر پذیری قوانین از مشاهدات بازی می کنند.
تحقیقات شبکه های نوروفازی جدید می باشد و اولین کتاب احتمالا توسط kasko (1992 بوده است.
شبکه های عصبی این توانایی را دارا می باشند که یک تابع را تخمین بزنند .ولی غیر ممکن است که نتایج را بصورت زبان محاوره ای طبیعی بیان کنند.در ساخت مستقیم یک شبکه عصبی، اطلاعات مورد نیاز جهت اموزش ارائه می گرددو مدلهای مات و مبهم و غیر قابل درک بوجود می اید.ولی یک سیستم فازی به شما اجازه می دهد که از تجربه افراد خبره که سیستم راتجربه کرده اند استفاده نمایید. قوانین فازی شامل بیانی از جملات می باشد که تقریبا به زبان طبیعی می باشند اما نمی توانند قوانینشان را یاد بگیرند.
ترکِیب شبکه عصبی و منطق فازیدر مدلهای نورو فازی یادگیری را به خوبی با قابیت خواندن تهیه می کند. مهندسان کنترل این فایده را پیدا می کنند زیرا مدلها می تواند با پردازش اپراتور بیان و تکمیل شوند.
سیستمهای استنتاج فازی بدلیل انعطاف، شفافیت ساختار و قابلیت یادگیری بسیار مورد توجه قرار گرفته اند، بطوریکه در دو دهه اخیر روش های بسیاری برای آموزش آنها توسعه یافته اند. از آنجمله میتوان به روش تطبیقی که تاکاگی و سوگنو برای مدل فازی عصبیشان ارائه کرده اند، مدلسازی B-spline تطبیقی توسط (ASMOD) Kavli، سیستم استنتاج فازی عصبی تطبیقی (ANFIS) توسط Jang و آموزش قواعد فازی با الگوریتم ژنتیکی (FUREGA) توسط Nelles اشاره کرد. همة این روشها برای آموزش مدل فازی عصبی تاکاگی و سوگنو طراحی شده و در کاربردهای مختلفی مانند شناسایی، تخمین، کنترل، پردازش سیگنال و پیشبینی بکار رفته اند. در این بخش ایده یادگیری عاطفی برای این مدل طراحی شده و مورد آزمایش قرار گرفته است. در زیر شرح مختصری از روشها ی مختلف یادگیری نوروفازی اورده شده است.
در گذشته برای ساخت شبیه ساز از مدل های کوچک ساخته شده استفاده می شد که تمام جوانب و نکات یک نیروگاه را بعضا در بر نمی گرفت اما با پیشرفت علم و تکنولوژی در زمینه شبیه سازی رایانه ای سیستم ها و چه در علم ریاضی روش های قدیمی منسوخ شد. آنچه مسلم است این است که مطالعه رفتار دینامیکی یک سیستم قدرت مستلزم مدلسازی دینامیکی اجزای مختلف آن به ویژه نیروگاه می باشد.
اخیرا توربین های گازی با بازده بالا و غیر ایزوله که به شبکه سراسری متصل می شوند در شبکه های قدرت توسعه بسیاری پیدا کرده اند. امروزه این نیروگاه ها از این جهت که سریع وارد مدار شده و قادر به جبران اوج بار می شوند بسیار مورد توجه قرار گرفته اند. همچنین این نیروگاه ها به واسطه سیکل ترکیبی شدن دارای راندمان بالاتری نسبت به حالت سیکل باز شده اند. از آنجا که بخش اعظم تولید نیروگاه های سیکل ترکیبی در قسمت گازی آن می باشد لذا مدلسازی قسمت گازی این نیروگاه ها اهمیت بیشتری پیدا می کنند. نیروگاه های پیشرفته توربین گازی به تغییرات فرکانس بسیار حساس هستند و ممکن است در یک اغتشاش فرکانسی دچار قطع اضطراری شوند.
همراه با روند توسعه و پیشرفت روش ساخت توربین های گازی با توربین های بخار بازدهی نیروگاه را به حدود 50 درصد می رساند. تجزیه و تحلیل ترمودینامیکی نشان می دهد که توربین های گازی دارای 30 درصد بازدهی هستند و درجه حرارت گاز خروجی آنها 500 تا 600 درجه سانتیگراد است که برای یک نیروگاه حرارتی دمای مناسبی است. با سرد کردن این گاز در یک بویلر بازیاب حرارت (Heat Recovery Steam Generator) می توان بخار سوپر هیت تولید نمود و به این طریق یک توربین بخار را به کار انداخت. این مجموعه را سیکل ترکیبی گویند.
نیروگاه های سیکل ترکیبی می توانند در دو مد تک و سیکل ترکیبی کار کنند. در مد تک فقط توربین گاز کار می کند و محصولات احتراق خروجی توربین گاز از طریق میراکننده کنار گذر خارج می شوند. در مد سیکل ترکیبی هر دو توربین گاز و بخار کار می کنند و محصولات احتراق خروجی توربین گاز از طریق میراکننده ورودی به بویلر راه می یابد. لازم به توضیح است که میراکننده ها در طی بهره برداری عادی واحد نقشی در کنترل بار ندارند و در طی بهره برداری عادی واحد، میراکننده ورودی بویلر کاملاً باز می باشد، که این امر به منظور استفاده حداکثر از انرژی حرارتی توربین های گاز می باشد. میراکننده ها فقط در هنگام راه اندازی و توقف یا توقف اضطراری، قابل کنترل بوده و در حفاظت بویلرها نقش اساسی ایفا می کنند.
یک امتیاز مهم نیروگاه های گازی این است که به سرعت می توان آنها را به شبکه متصل کرد و یا قطع نمود.
این نوع سیستم ها بعد از اغتشاش شدید سریعا ناپایدار می گردند. علاوه بر آن در اکثر موارد به موتورهای با توان اکتیو بالا وصل می شوند و دائماً در حال تغییر نقطه کار هستند و گاهی ورودی های با تغییر ناگهانی زیاد به آنها اعمال می شود که تمامی این موارد انجام مطالعات دینامیکی و پایداری را که در مرحله بعد از مدلسازی صورت می گیرد، ضروری می سازد.
با توجه به ضروری بودن حجم بالای مطالعات و کار مورد نیاز برای تهیه شبیه ساز نیروگاه گازی و اینکه برای شناسایی سیستم گاورنر ابتدا در نظر گرفته شد که از روش جعبه سیاه استفاده شود ولی امکان گرفتن نمونه در نیروگاه را پیدا نکردیم و با اطلاعات و نمونه های در دسترس مجبور شدیم مدل گاورنر را به صورت جعبه خاکستری و با بهره گرفتن از روابط فیزیکی پیدا کنیم در نهایت با توجه به وسعت کار مجبور به مدلسازی نیروگاه در یک قسمت از ناحیه کنترل بار شدیم که IGV تنها در این بازه در 5 درص
د مقدار حداکثر خود قرار دارد.
در این پروژه ضمن بررسی نحوه عملکرد نیروگاه به ویژه در حالت کنترل بار فرکانس به مدلسازی نیروگاه از نوع V94.2 با سیستم کنترل TELEPERM-XP با ظرفیت 159 مگاوات می پردازیم که توسط شرکت مپنا در بیشتر نیروگاه های در دست احداث از جمله ارومیه – جهرم – عسلویه – دماوند و کرمان و… در حال اجرا است. این نیروگاه ها از نوع تک محوره و قابل کار با دو سوخت گاز و گازوئیل می باشد.
صنایع شیمیایی همواره به عنوان یکی از مهمترین و سودآورترین صنایع مطرح بوده اند. حجم گسترده کاربرد محصولات شیمیایی به عنوان مواد اولیه صنایع دیگر باعث شده تا صنایع شیمیایی و پالایش نقش استراتژیک و مهمی را ایفا کنند. ارزش افزوده محصولات این صنایع نسبت به مواد خام آنها که عمدتاً نفت و گاز طبیعی می باشد سبب شده است تا همچنان بر میزان توجه و سرمایه گذاری در این بخش افزوده شود. در کشور ما هم با توجه به وجود منابع عظیم نفت و گاز و لزوم بهره گیری مناسب از این نعمت های خدادادی، توجه بیشتری به زمینه های مختلف فعالیت های علمی و صنعتی در این صنایع را طلب می کند.
تابع فرایندی به خصوص صنایع شیمیایی دارای ویژگی های خاص خود هستند که استفاده از کنترل کننده های ساده در آنها بهره وری مناسبی نداشته و در بسیاری موارد ناکارآمد می باشند. از طرفی گستردگی و پیچیدگی این صنایع و نیز وابستگی بخش های مختلف به هم، سبب شده است تا برای پیاده سازی کنترل کننده های پیشرفته، بستر سخت افزاری و نرم افزاری مناسبی نیز باشد. ساختارهای اتوماسیون استاندارد با فراهم کردن این بستر علاوه بر افزایش کیفیت و میزان تولید محصولات، باعث سهولت اجرای عملیات مختلف در یک مجتمع شده اند. اجرای کنترل فرایند پیشرفته (APC) در قالب ساختار اتوماسیون استاندارد میزان سوددهی قابل ملاحظه ای را نسبت به سرمایه گذاری اولیه، به دنبال داشته است با پیاده سازی سیستم های اتوماسیون علاوه بر توزیع سیستم کنترل، می توان با به کارگیری روش های مناسب تبادل اطلاعات بین بخش های مختلف انسجام لازم را برای استفاده هرچه بهتر از سیستم موجود فراهم آورد. مزایای استفاده از ساختارهای مناسب اتوماسیون با توجه به پیشرفت هایی که در عرصه های مختلف سخت افزاری و نرم افزاری صورت گرفته به حدی است که پیاده سازی یک سیستم اتوماسیون جامع و استاندارد به خصوص برای صنایع گسترده شیمیایی کاملاً ضروری می باشد، پیاده سازی های عملی سیستم های اتوماسیون در صنایع شیمیایی کشور نیز دو دسته اند، یک دسته دارای تجهیزات و ساختار قدیمی هستند و دسته دیگر سیستم های با تکنولوژی جدیدتر می باشند و غالباً توسط شرکت های خارجی سرمایه گذار نصب و راه اندازی شده اند. سیستم های قدیمی اتوماسیون برای پیاده سازی کنترل کننده های پیشرفته مناسب نیستند. متأسفانه علیرغم قابلیت به کارگیری روش های کنترل فرایند پیشرفته در سیستم های جدید، این امکان در اختیار صنایع شیمیایی کشور قرار نگرفته است.
پایه روش های کنترلی که در کنترل کننده های فرایند پیشرفته در صنایع شیمیایی مورد استفاده قرار گرفته اند، روش های کنترل پیش بین مبتنی بر مدل (MPC) هستند این روش ها با توجه به ویژگی های خاص خود برای فرایندهای شیمیایی بسیار مناسب هستند و امروزه در بسیاری موارد به کار رفته اند. موارد پیاده سازی عملی متعدد این کنترل کننده ها، نشان دهنده میزان اهمیت آنها در صنایع شیمیایی می باشد.
تخمین آینده خروجی و حالت های سیستم ابتدا در تئوری پیش بینی و تخمین کالمن برای سیستم های گسسته زمان در سال 1960 ارائه گردید. همچنین در سال 1963 پروپوی یک کنترل کننده با افق پیشرو یا جلورونده را معرفی کرد. بعدها در سال 1970 اشتروم استفاده از پیش بین ها را در کنترل حداقل واریانس گسسته زمان بررسی کرد. وی روش چند جمله ای را برای طراحی پیش بین ها ارائه کرد. در کاری که اشتروم انجام داد کیفیت کنترل بسیار به خط مشی عملکردی که بایستی بهینه شود وابسته بود. این بهینه سازی عموماً یک تابع هزینه تک مرحله ای در نظر گرفته شده بود.
با توجه به عدم پوشش کامل نیازهای صنایع مختلف توسط کنترل کننده های ابداع شده به خصوص در مواجهه با اندرکنش زیاد بین متغیرها و اغتشاشات مختلف، همچنان نیاز به کنترل کننده های پیشرفته ضروری به نظر می رسید. تلاش هایی که در دهه های 1960 و 1970 در ارتباط با کنترل پیش بین صورت گرفته بود زمینه مساعدی را برای ظهور کنترل کننده های پیش بین مبتنی بر مدل (MPC) فراهم آورد. در این سال ها به طور پراکنده روش های ابتدایی توسط شرکت های مختلف به کار گرفته شده بودند.
به عنوان نمونه شرکت نفتی Shell در سال 1973 روشی مشابه DMC را به کار برد. اما اوین ارائه یک نمونه علمی و عملی کنترل کننده های پیش بین مبتنی بر مدل توسط ریچالت در سال 1976 و با معرفی روش کنترل پیش بینی مبتنی بر مدل ضربه MAC در یک کنفرانس صورت گرفت که اولین پیاده سازی عملی MPC ها نیز به شمار می آید.
عبارت MPC یک دسته از الگوریتم های کنترل کامپیوتری که رفتار آینده یک سیستم در یک افق مشخص را از طریق به کارگیری مدلی صریح و واضح از فرایند، کنترل می کند تشریح می نماید در هر گام کنترلی، الگوریتم MPC یک دنباله حلقه باز از تنظیمات متغیرهای دستکاری شونده (MV) (متغیرهای ورودی) را به منظور بهینه سازی رفتار آینده سیستم (متغیرهای کنترل شونده (CV) یا خروجی) محاسبه می کند که در نهایت دنباله ای از متغیرهای ورودی مناسب در افق تعریف شده برای کنترل جهت اعمال به سیستم به دست می آید. اولین درایه این دنباله به سیستم اعمال شده و عملیات پیش بینی و بهینه سازی در هر گام کنترلی که می تواند دوره نمونه برداری سیستم باشد، مجدداً انجام می پذیرد.
مبدل های ماتریسی، مبدل هایی هستند که قابلیت های بسیار بالایی را دارند و توانایی تبدیل یک ولتاژ با فاز و دامنه و فرکانس معین به یک ولتاژ با فاز و دامنه و فرکانس متفاوت از آن را دارند برتری های این مبدل ها نسبت به مبدل های رایج AC/DC/AC باعث شده تا در سال های اخیر مورد توجه ویژه قرار گیرد. مبدل های رایج AC/DC/AC در باس DC خود دارای یک خازن الکترولیتی بزرگ می باشند که باعث افزایش هزینه و حجم این مبدل ها می باشند. و همچنین استفاده از آنها در دماهای بالا را ممکن نمی سازد. همچنین وجود سلف های بزرگ در هر فاز ورودی که برای سینوسی کردن جریان ورودی به کار می رود باعث افزایش قابل ملاحظه حجم و هزینه می شوند. البته در بعضی مقالات برای حل این مشکل استفاده از خازن های پلی پروپیلن به جای خازن های الکترولیتی توصیه می شود. اما با این حال مشکل سلف های بزرگ همچنان باقی است. ساختارهای مبدل های ماتریسی برای اولین بار در سال 1980 معرفی شد. از جمله مزایای مبدل های ماتریسی عدم نیاز به عناصر ذخیره کننده انرژی در ساختار این مبدل ها بود که ساخت آنها را به صورت مدار مجتمع امکان پذیر می سازد. از دیگر مزایای مبدل های ماتریسی می توان به قابلیت تنظیم ضریب قدرت ورودی تا عدد یک، قابلیت انتقال توان در هر دو جهت، شکل موج های با کیفیت بسیار بالا در خروجی و ورودی اشاره کرد. علت اینکه این مبدل ها تا سالهای اخیر در صنعت استفاده نشده بودند مشکل کموتاسیون این مبدل ها بوده است.
فصل اول
کلیات
1-1) هدف
هدف کلی این سمینار تحقیق کردن در مورد ساختارهای مختلف مبدل های ماتریسی و شبیه سازی و مقایسه مزایا و معایب این مبدل ها در مقایسه با مبدل های رایج AC/DC/AC می باشد. همچنین تحلیل و شبیه سازی روش های مختلف کنترل این مبدل ها مدنظر است. این کار با بهره گرفتن از نرم افزار مطلب و در محیط سیمولینک انجام شد. در این سمینار ضمن شبیه سازی روش های کنترل مبدل ماتریسی، سعی شده که از لحاظ THD ولتاژ خروجی، قابلیت کنترل ضریب قدرت ورودی و برخی مشخصات دیگر مربوط به این مبدلها، مزایای آنها نشان داده شود.
2-1- پیشینه تحقیق
ساختار مبدل ماتریسی اولین بار توسط Gyugyi و Pelly در 1976 پیشنهاد شد. آنها قاعده کلی سیکلوکنورتر را برای به دست آوردن یک فرکانس خروجی نامحدود توسط کلیدهای دوطرفه، بسط دادند. عیب اصلی ساختار اولیه این بود که جریان ورودی آن نامطلوب بود و همچنین ولتاژ خروجی دارای هارمونیک هایی بود که به راحتی توسط فیلتر از بین نمی رفتند.
این عیب در (4-2) توسط Venturini حل شد. او یک الگوریتم PWM جدید پیشنهاد کرد که جریان های ورودی سینوسی و ولتاژ خروجی با فرکانس نامحدود تولید می کرد. همچنین این الگوریتم، قابلیت کنترل ضریب قدرت ورودی را نیز به دست می داد. اما متاسفانه در این الگوریتم نسبت ولتاژ خروجی به ورودی به 0.5 محدود می شد.
در (5)، MAytum و Colman الگوریتم Velturini را بسط داده و توانستند نسبت ولتاژ خروجی به ورودی را به 0/866 برسانند.
اتیلن گلیکول (مونو اتیلن گلیکول1) با نام آیوپاک اتان 1و2 – دیول یک الکل با دو گروه عاملی می باشد.اتیلن گلیکول ماده ی شیمیایی است که به سبب پایین بودن نقطه انجماد و بالا بودن نقطه جوش به طور گسترده در خنک کننده ها و به عنوان ضدیخ و ضد جوش در وسایل نقلیه مورد استفاده قرار می گیرد.در حالت خالص، مایعی بی رنگ، لزج ،با مزه ی شیرین می باشد.جرم ملکولی 62.068 ،چگالی 1.1132 g/cm3 ،نقطه جوش 197.5 و دارای فراریت کمی می باشد.فشار بخار آن در 25 در حدود 12.25 Pa می باشد.اتیلن گلیکول سالهاست به دلیل صدماتی که به سیستم عصبی و کلیه ها می رساند در زمره مواد سمی شناخته شده است.
این ماده برای اولین بار در سال 1859 به وسیله شیمیدان فرانسوی چارلز ورتز2 تهیه شد و در میزان کم در زمان جنگ جهانی اول به عنوان سیال خنک کننده و بخشی از آن در تولید مواد منفجره مورد استفاده قرار گرفت.تولید انبوه صنعتی این ماده در سال 1927 وقتی که ماده ی اولیه آن یعنی اکسید اتیلن به راحتی و ارزان در دسترس سازندگان قرار گرفت،آغاز شد.این ماده وقتی برای اولین بار معرفی شد انقلابی هرچند کوچک در صنعت هواپیمایی خلق کرد هنگامیکه به جای آب به عنوان خنک کننده در رادیاتور ها استفاده شد،این ماده به دلیل بالا بودن نقطه جوش خود این امکان را فراهم کرد که رادیاتورهای کوچکتر در حرارتهای بالاتر هم کار کنند.قبل از تولید این ماده اکثر سازندگان هواپیماها از سیستمهای خنک کننده تبخیری که از آب با فشار بالا استفاده می کردند ،بهره می جستند بطوریکه این سیستمها غیر قابل اعتماد و در عملیات جنگی به آسانی آسیب پذیر بودند چرا که این سیستم فضای زیادی را در اتاق هواپیما اشغال می کرد و به راحتی می توانست مورد اصابت گلوله قرار گیرد.[1]
کاربردهای اتیلن گلیکول:
1-3-1)ضدیخ و خنک کننده
بیشترین کاربرد اتیلن گلیکول در تولید مایع ضدیخ1 و خنک کننده2 است. محصولات بر پایه گلیکول به مدت چندین سال برای کاهش دمای یخ زدن و افزایش نقطه جوش خنک کننده موتور مورد استفاده قرار می گیرند. مواد افزودنی به گلیکول ، مانع خوردگی در سیستم خنک کننده می شوند. امروزه عمده ی ضد یخها بر مبنای اتیلن گلیکول می باشند اما محصولات پروپیلن گلیکول3(PG) نیز در حال رشد می باشند. محصولات EG ارزانتر از PG بوده و در مقابل سمیت محصولات EG بیشتر از PG می باشد. اما هنوز EG جزء اصلی همه ی ضدیخها می باشد.
بدون توجه به نوع گلیکول مصرفی ، خنک کننده موتور چهار کار مهم را انجام می دهد. این موارد انتقال حرارت ، کاهش دمای یخ زدن ، افزایش دمای جوش و بالاخره جلوگیری از خوردگی می باشد. آب گرما را به خوبی هدایت می کند اما گلیکولها هدایت خوبی ندارند در نتیجه وقتی که غلظت گلیکول افزایش می یابد ضریب انتقال حرارت مخلوط کاهش می یابد. به منظور بهینه کردن انتقال حرارت ، موتورهای پیشرفته امروزی طوری طراحی می شوند که با مخلوطی در محدوده 40 به 60 تا 60 به 40 حجمی از آب و اتیلن گلیکول کار کنند. کیفیت آب مورد استفاده در ساخت خنک کننده به منظور اطمینان از کارکرد طولانی سیستم خنک کننده و موتور آب مقطر و یا آب دی یونیزه شده پیشنهاد می گردد.
1-3-2)سیال یخ زدای هواپیما
اتیلن گلیکول به عنوان سیال یخ زدای هواپیما در فصول سرد به داخل موتور و بالها و بدنه هواپیما پاشیده می شود. این سیال به طور متداول حاوی 10 الی 50 درصد EG (مونو اتیلن گلیکول)، مواد فعال کننده سطحی و دیگر افزودنیها شیمیایی می باشد. البته حجم زیادی از پسابهای این ماده مشکل زیادی را برای فرودگاه ها ایجاد می کند.
1-3-3)پرداخت فلزات
عملیات پرداخت فلزات در مقیاس بزرگ مانند ساختن هواپیما به عمل خنک کاری بخشهای گرم فلز به وسیله این سیال انجام می شود. سیالات خنک کننده اکثرا حاوی تقریبا 50% پلی اتیلن گلیکول،پلی آلکیل گلیکول یا اکسی پلی گلیکولها به همراه مقادیری از مواد مانع خوردگی در حدود چند ppm می باشند.
1-3-4)سایر کاربردهای اتیلن گلیکول
اتیلن گلیکول در صنعت پلاستیک برای تولید الیاف پلی استر،رزین ها و همچنین پلی اتیلن ترفتالات ، که برای ساخت بطری های پلاستیکی نوشیدنی های غیر الکلی استفاده می شود.
بالا بودن نقطه جوش اتیلن گلیکول و تمایل ترکیب با آب ، آن را یک خشک کن ایده آل برای بهره برداری از گاز طبیعی می سازد. در این مورد معمولا بخار آب اضافی با جذب توسط گلیکول2 برداشته می شود. اتیلن گلیکول از بالا به پایین برج جاری شده و با مخلوط بخار آب و گاز هیدروکربن که از کف چاه بالا می آیند برخورد می کند گلیکول به طور شیمیایی بخار آب را جذب کرده و اجازه می دهد که گاز خشک شده از بالای برج خارج شود سپس گلیکول و آب از یکدیگر جدا شده و گلیکول مجددا به برج برگشت داده می شود. بعلاوه مقدار تزریق مونو اتیلن گلیکول برای جلوگیری از تشکیل هیدرات ها بسیار پایین تر از مصرف دی اتیلن گلیکول در سیکل جذب آب از گاز است[2].
1-4)خطرات صنعتی
اتیلن گلیکول در دمای 230 تا 250 (110-121 ) می تواند شروع به شکستن کند. بایستی توجه کرد که شکستن می تواند وقتی که دمای کل سیستم زیر این حد است< br />هم اتفاق بیافتد ، زیرا درجه حرارت سطحی در مبدل های حرارتی و دیگ بخار می تواند در برخی بخشها حتی بالای دمای فوق باشد.
مسموم کنندگی به عنوان خطر محیط زیستی اصلی اتیلن گلیکول در نتیجه استفاده بیش حد آن می باشد . به دلیل مزه شیرین آن گاهی اوقات بچه ها و حیوانات مقدار زیادی از آن را مصرف می کنند در کشورهای پیشرفته معمولا یک ماده تلخ کننده بنام دناتونیم-بنزوات3 برای تغییر مزه اتیلن گلیکول به آن اضافه می شود[3].
منطق بازیابی اتیلن گلیکول
چند دلیل برای بازیابی خنک کننده های مصرف شده وجود دارد. اول اینکه طبق قوانین محیط زیستی اگرچه اتیلن گلیکول به صورت بیولوژیکی قابل تجزیه می باشد اما از آنجا که پساب ضد یخ حاوی فلزات سنگین مانند سرب ، کادمیم و کروم بوده و این پساب را جزء ضایعات سمی و مضر قرار داده است ، لذا دفع آن به محیط و سیستم فاضلاب قبل از تصفیه غیر قانونی می باشد و همچنین به دلیل مقادیر زیاد آب در سیال خنک کننده سوزاندن روشی مناسب نمی باشد. بنابراین در عمل ، فرایند بازیافت گلیکول ، اگر هزینه کمتری نسبت به روش های دیگر داشته باشد ترجیح داده می شود. در آلمان با وجود قوانین زیست محیطی سفت و سخت نسبت به مصرف مایع خنک کننده استفاده شده ، فقط در حدود 40% مایع خنک کننده استفاده شده برای تصفیه به مراکز بازیافت فرستاده می شود[8]. دومین مساله این است که بازیابی ضدیخ مانند بازیابی روغن موتور مصرف شده می تواند در حفظ منابع تجدید ناپذیر اولیه مثل گاز طبیعی مفید باشد و هزینه فرایند خنک کننده بازیابی شده ارزانتر از خنک کننده اولیه و اصلی می باشد ، البته کارایی این دو تا حد زیادی شبیه به هم می باشد. تجربه چنین بازیافتی در تصفیه و بازیابی روغن موتور مصرف شده نتایج خوب و مقرون به صرفه ای را برای صنعت به ارمغان آورده است. البته موضوع بازیابی ضدیخ و خنک کننده ها و محصولات این چنینی هنوز به طور عمده در کشورهای صنعتی مورد توجه قرار نگرفته است و در سالهای اخیر تلاشهای زیادی برای بازیابی اینگونه پسابها انجام نگرفته است[5].
بازیابی گلیکول مصرف شده نیازمند دو فرایند اصلی جداسازی می باشد که تنها مرحله دوم در تغلیظ محصول حاصل از واکنش آب و اکسید اتیلن مشترک می باشد.
1-جداسازی آلاینده ها به منظور تولید یک محصول پایه ی به اندازه کافی خالص از گلیکول و آب برای فرموله کردن دوباره ضدیخ
2-جداسازی آب و گلیکول تا غلظت اتیلن گلیکول در آب خالص برای تخلیه مستقیم به سیستم پساب مناسب گردد.
1-5-1)مرحله اول پیش تصفیه :
پیش تصفیه خنک کننده مصرف شده،نقشی حیاتی در عملکرد سیستمهای نمک زدایی جریانهای پایین دستی دارد. جداسازی ثقلی و فیلتراسیون ذرات معمولا در ابتدای فرایندهای نمک زدایی نصب می شوند. به خاطر پتانسیل بالای گرفتگی ، سیستمهای غشایی در مرحله پیش تصفیه کمتر مورد توجه قرار می گیرند و در فیلتراسیون / سانترفیوژ مواد حل شده از خنک کننده مصرف شده زدوده شده سپس به آن گرما داده می شود و بعضی از ناخالصی ها توسط عمل سانترفیوژ حذف می گردند.
1-5-2)مرحله دوم پیش تصفیه
مرحله دوم پیش تصفیه با بهره گرفتن از تکنیکهای جداسازی غشایی انجام می گیرد. تعدادی از سیستمهای بر پایه غشاء نیز ممکن است به منظور پیش تصفیه یا نمک زدایی خنک کننده مصرف شده به کار روند. این موارد را می توان به دو گروه ، نیرومحرکه فشاری و نیرومحرکه الکتریکی تقسیم بندی کرد. فرایندهای غشایی با نیرومحرکه فشار بر پایه اندازه ذرات و روش های با نیرومحرکه الکتریکی براساس یونهای باردار عمل می کنند.
تعدادصفحه :90
قیمت : 14700 تومان